第3个回答 2016-12-20
支 付 宝 帮 助 中 心 0 1 0 — 5 7 1 4 — 0 8 7 7
支 付 宝 维 权 中 心 0 1 0 — 5 7 1 4 — 0 8 7 7
_
因为 x^2+y^2+4x+3=0
所以 (x + 2)^2 + y^2 = 1
即以 (-2 ,0)为圆心 1 为半径的圆
(y-2)/(x-1)可以理解为 上面圆上的点和 点(1,2)连线的斜率的取值范围
设过点 (1,2) 的直线方程 为 y = kx +b
将点(1,2) 代入上式得 b = 2 - k
所以 直线方程为 y = kx + 2 - k
那么当直线与圆相切 时 圆心( -2 ,0) 到直线的距离是 1
所以 | -2k + 2 - k |/√(1^2 + k^2) = 1
解得 k = (3 ± √3)/4
即直线的斜率的取值范围是 [(3 - √3)/4,(3 + √3)/4 ]
也就是我们要求的 (y-2)/(x-1)的取值范围 即 [(3 - √3)/4,(3 + √3)/4 ]